Reporting on Invasive Lobular Breast Cancer in Clinical Trials: A Systematic Review - npj Breast Cancer
07/17/2024
Christgen, M. et al. Lobular breast cancer: histomorphology and different concepts of a special spectrum of tumors. Cancers13, 3695 (2021).
Desmedt, C. et al. Genomic characterization of primary invasive lobular breast cancer. J. Clin. Oncol.34, 1872–1880.
Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell163, 506–519 (2015).
Richard, F. et al. Characterization of stromal tumor-infiltrating lymphocytes and genomic alterations in metastatic lobular breast cancer. Clin. Cancer Res.26, 6254–6265 (2020).
Van Baelen, K. et al. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann Oncol. https://doi.org/10.1016/J.ANNONC.2022.05.006 (2022).
Christgen, M. et al. Lobular breast cancer: clinical, molecular and morphological characteristics. Pathol. Res Pract.212, 583–597 (2016).
Tan, P. H. et al. The 2019 World Health Organization classification of tumours of the breast. Histopathology77, 181–185 (2020).
Christgen, M. et al. Differential impact of prognostic parameters in hormone receptor–positive lobular breast cancer. Cancer126, 4847–4858 (2020).
Metzger, O. et al. Clinical utility of MammaPrint testing in invasive lobular carcinoma: results from the MINDACT phase III trial. Eur. J. Cancer138, S5–S6 (2020).
Mouabbi, J. A., Hassan, A., Lim, B., Hortobagyi, G. N., Tripathy, D. & Layman, R. M. Invasive lobular carcinoma: an understudied emergent subtype of breast cancer. Breast Cancer Res. Treat.193, 253–264 (2022).
Metzger, O. et al. Relative effectiveness of letrozole compared with tamoxifen for patients with lobular carcinoma in the BIG 1-98 trial. J. Clin. Oncol.33, 2772–U85 (2015).
Timbres, J. et al. Survival outcomes in invasive lobular carcinoma compared to oestrogen receptor-positive invasive ductal carcinoma. Cancers13, 3036 (2021).
Trapani, D. et al. Benefit of adjuvant chemotherapy in patients with lobular breast cancer: a systematic review of the literature and metanalysis. Cancer Treat. Rev.97, 102205 (2021).
Bradley, R. et al. Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: a patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol.23, 382 (2022).
Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim.5, 1–31 (2019).
McCart Reed, A. E., Kutasovic, J. R., Lakhani, S. R. & Simpson, P. T. Invasive lobular carcinoma of the breast: morphology, biomarkers and’omics. Breast Cancer Res.17. https://doi.org/10.1186/s13058-015-0519-x (2015).
Abel, M. K. et al. Decreased enrollment of patients with advanced lobular breast cancer compared to ductal breast cancer in interventional clinical trials. J. Clin. Oncol.39, 1092–1092 (2021).
Schwartz, L. H. et al. RECIST 1.1 - Standardisation and disease-specific adaptations: perspectives from the RECIST Working Group. Eur. J. Cancer62, 138–145 (2016).
Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). https://doi.org/10.1016/j.ejca.2008.10.026.
Sledge, G. W. et al. MONARCH 2: Abemaciclib in combination with fulvestrant in women with HR+/HER2-advanced breast cancer who had progressed while receiving endocrine therapy. J. Clin. Oncol.35, 2875–2884 (2017).
Zhang, Q. Y. et al. MONARCH plus: abemaciclib plus endocrine therapy in women with HR+/HER2– advanced breast cancer: the multinational randomized phase III study. Ther. Adv. Med. Oncol.12. https://doi.org/10.1177/1758835920963925 (2020).
Johnston, S. et al. MONARCH 3 final PFS: a randomized study of abemaciclib as initial therapy for advanced breast cancer. NPJ Breast Cancer5, 5 (2019).
Finn, R. S. et al. Overall survival (OS) with first-line palbociclib plus letrozole (PAL + LET) versus placebo plus letrozole (PBO + LET) in women with estrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer (ER+/HER2− ABC): analyses from PALOMA-2. J. Clin. Oncol.40 LBA1003–LBA1003 (2022).
Xu, B. et al. Palbociclib plus letrozole versus placebo plus letrozole in Asian postmenopausal women with oestrogen receptor–positive/human epidermal growth factor receptor 2–negative advanced breast cancer: Primary results from PALOMA-4. Eur. J. Cancer175, 236–245 (2022).
Ferlicot, S. et al. Wide metastatic spreading in infiltrating lobular carcinoma of the breast. Eur. J. Cancer40, 336–341 (2004).
Vincent-Salomon, A. et al. Lobular phenotype related to occult-metastatic spread in axillary sentinel node and/or bone marrow in breast carcinoma. Eur. J. Cancer45, 1979–1986 (2009).
Johnson, K., Sarma, D. & Hwang, E. S. Lobular breast cancer series: Imaging. Breast Cancer Res.17, 94 (2015).
Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol.134, 178–189 (2021).
Nagayama, A., Vidula, N. & Bardia, A. Novel therapies for metastatic triple-negative breast cancer: spotlight on immunotherapy and antibody-drug conjugates. Oncology (Williston Park)35, 249–254 (2021).
Elliott, M. J. & Cescon, D. W. Development of novel agents for the treatment of early estrogen receptor positive breast cancer. Breast62, S34 (2022).
Martin, M. & López-Tarruella, S. Emerging therapeutic options for HER2-positive breast cancer. Am. Soc. Clin. Oncol. Educ. Book35, e64–e70 (2016).
Gianni, L. et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol.33, 534–543 (2022).
Mittendorf, E. A. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet396, 1090–1100 (2020).
Guan, Z. et al. Randomized trial of lapatinib versus placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2–overexpressing metastatic breast cancer. J. Clin. Oncol.31, 1947–1953 (2013).
von Minckwitz, G. et al. Survival after neoadjuvant chemotherapy with or without bevacizumab or everolimus for HER2-negative primary breast cancer (GBG 44-GeparQuinto). Ann. Oncol.25, 2363–2372 (2014).
Untch, M. et al. Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial. Lancet Oncol.13, 135–144 (2012).
Decker, T. et al. Final results from IMPROVE: a randomized, controlled, open-label, two-arm, cross-over phase IV study to determine patients’ preference for everolimus in combination with exemestane or capecitabine in combination with bevacizumab in advanced HR-positive, HER2-negative breast cancer. BMC Cancer20, 286 (2020).
Baselga, J. et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol.18, 904 (2017).
Gao, J. J. et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol.21, 250–260 (2020).
Gao, J. J. et al. Overall survival in patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer treated with a cyclin-dependent kinase 4/6 inhibitor plus fulvestrant: a US Food and Drug Administration pooled analysis. Lancet Oncol.22, 1573–1581 (2021).
Iorfida, M. et al. Invasive lobular breast cancer: Subtypes and outcome. Breast Cancer Res Treat.133, 713–723 (2012).
De Schepper, M. et al. Results of a worldwide survey on the currently used histopathological diagnostic criteria for invasive lobular breast cancer. Mod. Pathol. https://doi.org/10.1038/S41379-022-01135-2 (2022).
Mouabbi, J. A. et al. Histology-based survival outcomes in hormone receptor-positive metastatic breast cancer treated with targeted therapies. NPJ Breast Cancer8, 131 (2022).
Agostinetto, E. et al. Clinico-molecular characteristics associated with outcomes in breast cancer patients treated with CDK4/6 inhibitors: results from the AURORA Molecular Screening Initiative. J. Clin. Oncol.41, 1019–1019 (2023).
Orlandi, A. et al. Palbociclib plus fulvestrant or everolimus plus exemestane for pretreated advanced breast cancer with lobular histotype in ER+/HER2− patients: a propensity score-matched analysis of a multicenter retrospective patient series. J. Pers. Med.10, 1–11 (2020).
Agostinetto, E. et al. ROSALINE: a phase II, neoadjuvant study targeting ROS1 in combination with endocrine therapy in invasive lobular carcinoma of the breast. Future Oncol.18, 2383–2392 (2022).
Crizotinib in Lobular Breast, Diffuse Gastric and Triple Negative Lobular Breast Cancer or CDH1-mutated Solid Tumours—Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03620643?cond=NCT03620643&draw=2&rank=1 (accessed 27 Apr 2021).
Hyman, D. et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature554, 189–194 (2018).
Ma, C. X. et al. The phase II MutHER study of neratinib alone and in combination with fulvestrant in HER2 mutated, non-amplified metastatic breast cancer. Clin. Cancer Res. clincanres.CCR-21-3418-E.2021 (2022).
Voorwerk, L. et al. PD-L1 blockade in combination with carboplatin as immune induction in metastatic lobular breast cancer: the GELATO trial. Nat. Cancer4, 535 (2023).
Kadys, A., Gremke, N., Schnetter, L., Kostev, K. & Kalder, M. Intercontinental comparison of women with breast cancer treated by oncologists in Europe, Asia, and Latin America: a retrospective study of 99,571 patients. J. Cancer Res. Clin. Oncol.149, 7319–7326 (2023).
Hogan, M. P. et al. Comparison of 18F-FDG PET/CT for systemic staging of newly diagnosed invasive lobular carcinoma versus invasive ductal carcinoma. J. Nucl. Med.56, 1674–1680 (2015).
Zugni, F. et al. The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer. PLoS ONE13, e0205251 (2018).
Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin.69, 127–157 (2019).
Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin.71, 209–249 (2021).
Javier-DesLoges, J. et al. Disparities and trends in the participation of minorities, women, and the elderly in breast, colorectal, lung, and prostate cancer clinical trials. Cancer128, 770–777 (2022).
Sedrak, M. S. et al. Older adult participation in cancer clinical trials: a systematic review of barriers and interventions. CA Cancer J. Clin.71, 78–92 (2021).
Corrigan, K. L. et al. Exclusion of men from randomized phase III breast cancer clinical trials. Oncologist25, e990–e992 (2020).
Alsaleh, K. et al. Neoadjuvant endocrine therapy with or without palbociclib in low-risk patients: a phase III randomized double-blind SAFIA trial. J. Cancer Res. Clin. Oncol.149, 6171–6179 (2023).
Bundred, N. et al. Combined perioperative lapatinib and trastuzumab in early HER2-positive breast cancer identifies early responders: randomized UK EPHOS-B trial long-term results. Clin. Cancer Res.28, 1323 (2022).
Guarneri, V. et al. Everolimus plus aromatase inhibitors as maintenance therapy after first-line chemotherapy: final results of the phase III randomised MAIN-A (MAINtenance Afinitor) trial. Eur. J. Cancer154, 21–29 (2021).
Fehm, T. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat.124, 403–412 (2010).
Willemsen, A. E. C. A. B. et al. Everolimus exposure and early metabolic response as predictors of treatment outcomes in breast cancer patients treated with everolimus and exemestane. Target Oncol.13, 641–648 (2018).